Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves

Cubics K001-K280

updated lists of centers are available

here

K001 NEUBERG CUBIC, 37-POINT CUBIC, pK(X6, X30), O(X3), C(0), C(infinity)

X(1), X(3), X(4), X(13), X(14), X(15), X(16), X(30), X(74), X(370), X(399), X(484), X(616), X(617), X(1138), X(1157), X(1263), X(1276), X(1277), X(1337), X(1338), X(2132), X(2133), X(3065), X(3440), X(3441), X(3464), X(3465), X(3466), X(3479), X(3480), X(3481), X(3482), X(3483), X(3484), X(5623), X(5624), X(5667) up to X(5685)

K002 THOMSON CUBIC, 17-POINT CUBIC, pK(X6, X2), TC(X3)

X(1), X(2), X(3), X(4), X(6), X(9), X(57), X(223), X(282), X(1073), X(1249), X(3341), X(3342), X(3343), X(3344), X(3349), X(3350), X(3351), X(3352), X(3356)

K003 McCAY CUBIC, GRIFFITHS CUBIC, pK(X6, X3), a pK60+

X(1), X(3), X(4), X(1075), X(1745), X(3362), E(412)=X(1075)*

K004 DARBOUX CUBIC, pK(X6, X20), a central cubic

X(1), X(3), X(4), X(20), X(40), X(64), X(84), X(1490), X(1498), X(2130), X(2131), X(3182), X(3183), X(3345), X(3346), X(3347), X(3348), X(3353), X(3354), X(3355), X(3472), X(3473), X(3637)

K005 NAPOLEON CUBIC, FEUERBACH CUBIC, pK(X6, X5), D(0)

X(1), X(3), X(4), X(5), X(17), X(18), X(54), X(61), X(62), X(195), X(627), X(628), X(2120), X(2121), X(3336), X(3459), X(3460), X(3461), X(3462), X(3463), X(3467), X(3468), X(3469), X(3470), X(3471), X(3489), X(3490)

K006 ORTHOCUBIC, pK(X6, X4)

X(1), X(3), X(4), X(46), X(90), X(155), X(254), X(371), X(372), X(485), X(486), X(487), X(488), E(555), E(556)

K007 LUCAS CUBIC, pK(X2, X69)

X(2), X(4), X(7), X(8), X(20), X(69), X(189), X(253), X(329), X(1032), X(1034), X(5932), E(623), E(624), E(625), E(636)

K008 DROUSSENT CUBIC, pK(X2, X316) : the only isotomic circular pK, DF(X69), K(X2) in CL051,

X(2), X(4), X(67), X(69), X(316), X(524), X(671), X(858), X(2373) = E(591), E(618), E(620), E(634), E(635)

K009 LEMOINE CUBIC, K(O), K(X3), the Deléham cubic with node X(3), psK(X184, X2, X3), spK(X4, X5)

X(3), X(4), X(32), X(56), X(1147), X(6177), X(6178), X(6337), E(403), E(908), E(910), E(912), E(914), E(935), E(936), E(992), E(994), E(996), E(998), E(1000), E(1002)

K010 SIMSON CUBIC, cK(#X2, X69), nK(X2, X69, X2), perpendicular tripolars isotomic cubic

X(2), X(2394) upto X(2419)

K011 TUCKER CUBIC, T(X4), T(X69), nK(X2, X2, X4)

X(4), X(69), X(877), X(879)

K012 Tucker-Brocard cubic, T(X6), T(X76), nK(X2, X2, X6)

X(6), X(76), X(880), X(882).

K013 Tucker-Gergonne-Nagel cubic, T(X7), T(X8), nK(X2, X2, X7)

X(7), X(8), X(883), X(885)

K014 Tucker-Jerabek cubic, T(X1), T(X75), nK(X2, X2, X1)

X(1), X(75), X(874), X(876)

K015 Tucker nodal cubic, T(X2), cK(#X2, X2), nK(X2, X2, X2)

X(2), X(4240), X(5466), X(5468), X(6548)

K016 Tucker+ cubic, nK0+(X2, X2)

none

K017 Brocard (first) cubic, nK0(X6, X385)

X(2), X(6), X(99), X(512)

K018 Brocard (second) cubic, Z+(OK), nK0(X6, X523), O(X6) orthopivotal cubic, an isogonal focal nK, spK(X524, X2), spK(X524, X6)

X(2), X(6), X(13), X(14), X(15), X(16), X(111), X(368), X(524), X(5000), X(5001), E(458)=X(368) *, foci of the Steiner inellipse

K019 Brocard (third) cubic, nK0(X6, X647), spK(X511, X6), an isogonal focal nK

X(98), X(511)

K020 Brocard (fourth) cubic, pK(X6, X384)

X(1), X(3), X(4), X(32), X(39), X(76), X(83), X(194), X(384), X(695), X(2896), X(3224), X(3491) up to X(3503), E(657) = X(2896)*

K021 Brocard (fifth) cubic, pK(X6, X512), EAC1 = Equal areas (first) cevian cubic, a circular cubic

X(1), X(99), X(512), X(2142), X(2143), X(5539), E(697), E(699)

K022 Brocard (sixth) cubic, nK(X3, X524, X2), a circular cubic

X(2), X(3), X(110), X(525), E(504)

K023 Brocard (seventh) cubic, O(X1316) orthopivotal cubic, a circular cubic

X(4), X(13), X(14), X(30), X(1316)

K024 Kjp, nK0+(X6, X6), a nK60+

none

K025 Ehrmann strophoid, DF(X4)

X(4), X(30), X(265), X(316), X(671), X(1263), X(1300), X(5080), X(5134), X(5203), X(5523), X(5962)

K026 Musselman (first) cubic, KN++, a K60++, a central cubic, psK(X51, X2, X3), spK(X3, X140)

X(3), X(4), X(5), X(5403), X(5404), E(626)

K027 Musselman (second) cubic, nK(X393, X2052, X4), cK(#X4, X2052), a cK60

X(4), E(991)

K028 Musselman (third) cubic, a K60+, psK(X4, X264, X3), spK(X3, X5)

X(3), X(4), X(8), X(76), X(847), X(3557), X(3558), X(3730), E(404), E(535), E(539), E(909), E(911), E(913), E(915), E(937), E(993), E(995), E(997), E(999), E(1001), E(1003), E(2488), E(2567)

K029 Morley (first) cubic, pK(X6, X356)

X(1), X(356), X(357), X(358), X(1134), X(1135), X(1507), X(1508), X(3605)

K030 Morley (second) cubic, pK(X6, X3277)

X(1), X(1134), X(1135), X(1136), X(1137), X(3277), X(3607)

K031 Morley (third) cubic, pK(X6, X3276)

X(1), X(357), X(358), X(1136), X(1137), X(3276), X(3606)

K032 Soddy cubic, C(-1)

X(4), X(20), X(175), X(176), X(1131), X(1132)

K033 Spieker central cubic, pK(X37, X8), Z(X8, X58)

X(1), X(4), X(8), X(10), X(40), X(65), X(72), X(3176), X(5930)

K034 Spieker perspector cubic, pK(X2, X75)

X(1), X(2), X(7), X(8), X(63), X(75), X(92), X(280), X(347), X(1895)

K035 Steiner cubic, pK(X6, X99)

X(1), X(39), X(83), X(99), X(512), X(1018), X(1019), X(1379), X(1380), X(3413), X(3414)

K036 Tixier central cubic, nK(X115, ?, X476)

X(476), X(523)

K037 Tixier equilateral cubic, pK(X1989, X30), a pK60+, a stelloid

X(30), X(5627) = E(574)

K038 Stammler strophoid

X(3), X(30), X(36), X(131), X(187), X(1511), X(2482), X(3184), X(6150)

K039 Jerabek strophoid

X(3), X(74), X(186), X(187), X(1157), X(3455), X(5172), X(5866), X(5961), X(6091), E(659)

K040 Pelletier strophoid, nK0(X6, X650), cK0(#X1, X650), spK(X518, X1)

X(1), X(105), X(243), X(296), X(518), X(1155), X(1156), X(2651), X(2652), X(5205)

K041 de Longchamps cubic, K(X20), a generalized Lemoine cubic, psK(X20, X69, X4)

X(4), X(20), X(279), X(280)

K042 Droussent central cubic, pK(X187, X11061)

X(67), X(895), X(1177), X(2930), X(5095), X(5181), E(406), E(618), E(673)

K043 Droussent medial cubic, pK(X187, X2)

X(2), X(3), X(6), X(67), X(111), X(187), X(468), X(524), X(1560), X(2482)

K044 Euler central cubic or Darboux Orthic cubic, pK(X216, X4)

X(3), X(4), X(5), X(52), X(68), X(155), E(593)

K045 Euler perspector cubic, pK(X2, X264)

X(2), X(3), X(4), X(69), X(254), X(264), X(1993), X(5392)

K046-a Fermat (first) cubic, pK(X396, X616), a pK60++, a central cubic

X(13), X(616), X(618)

K046-b Fermat (second) cubic, pK(X395, X617), a pK60++, a central cubic

X(14), X(617), X(619)

K047 Antreas cubic, a central cubic, spK(X2, X376)

X(3), X(4), X(6), X(20), X(253), X(1350)

K048 McCay hessian cubic

X(2), X(15), X(16), X(511), X(1113), X(1114)

K049 McCay orthic cubic, pK(X53, X4), D(1), a pK60+, spK(X3, X389)

X(4), X(5), X(52), X(847)

K050 Neuberg orthic cubic, pK(X11062, X4)

X(4), X(5), X(15), X(16), X(52), X(128), X(186), X(1154), X(1263), X(2383), X(2902), X(2903), X(2914), X(5962), X(6116), X(6117)

K051 A1(H), an Allardice (first) cubic, complement of cK(#X20, X2)

X(4), X(1650)

K052 A2(X115), an Allardice (second) cubic, cK(#X99, X2)

X(99), X(805), X(877), X(880), X(892), X(5468)

K053-A A-Apollonian strophoid, O(A)

X(13), X(14)

K053-B B-Apollonian strophoid, O(B)

X(13), X(14)

K053-C C-Apollonian strophoid, O(C)

X(13), X(14)

K054 K(X5), a Lemoine generalized cubic, a K60+, spK(X3, midpoint of X140-X389)

X(4), X(5), X(143), E(681), E(682), E(1001)

K055 K(X6), a Lemoine generalized cubic

X(4), X(6), X(32), X(218), X(1992)

K056 K(X76), a Lemoine generalized cubic

X(4), X(76), E(994), E(1040)

K057-a O(F1) orthopivotal cubic

X(13), X(14), X(3413)

K057-b O(F2) orthopivotal cubic

X(13), X(14), X(3413)

K058 O(X1) orthopivotal cubic, pK(X2161, X80)

X(1), X(10), X(13), X(14), X(80), X(484), X(502), X(519), X(759), X(1128), X(1168) , X(3638), X(3639), E(567), E(568), E(642)

K059 O(X4) orthopivotal cubic, pK(X1990, X4)

X(4), X(13), X(14), X(30), X(113), X(1300), X(6110), X(6111)

K060 Kn, pK(X1989, X265), O(X5) orthopivotal cubic, D(∞)

X(4), X(5), X(13), X(14), X(30), X(79), X(80), X(265), X(621), X(622), X(1117), X(1141), X(5627), E(574), E(677), E(678), E(679)

K061-a O(X13) orthopivotal cubic, a strophoid

X(13), X(14), X(530), X(6110)

K061-b O(X14) orthopivotal cubic, a strophoid

X(13), X(14), X(531), X(6111)

K062 O(X51) orthopivotal cubic

X(13), X(14), X(51), X(61), X(62), X(250), X(262), X(511), X(5966)

K063 O(X111) orthopivotal cubic

X(6), X(13), X(14), X(111), X(543), X(671), X(6094), E(570)

K064 O(X523) orthopivotal cubic, nK0+(X1989, X1989), Sharygin cubic

X(13), X(14), X(476), X(523), X(5466)

K065 O(X524) orthopivotal cubic, a central focal cubic

X(2), X(13), X(14), X(67), X(524), X(2770), X(5463), X(5464)

K066-a O(X627) orthopivotal cubic, pK(X396, X622), a Neuberg cubic

X(13), X(14), X(17), X(532), X(617), X(618), X(622), X(627), X(3479), E(628)

K066-b O(X628) orthopivotal cubic, pK(X395, X621), a Neuberg cubic

X(13), X(14), X(18), X(533), X(616), X(619), X(621), X(628), X(3480), E(629)

K067 pK(X11063, X5), O(X195) orthopivotal cubic

X(3), X(5), X(13), X(14), X(195), X(1157), X(1173), X(5412), X(5416)

K068 nK0++(X523, X524), a G-central nK

X(2), X(523), X(3413), X(3414)

K069 nK++(X647, X11064, X3), a O-central nK

X(3), X(523), X(2574), X(2575)

K070-a Shoemaker's cubic, pK(X4, X1586), Kiepert Cevian Mate of the Orthocubic

X(2), X(4), X(486), X(492), X(1586), X(3069), X(2067)*

K070-b Shoemaker's cubic, pK(X4, X1585), Kiepert Cevian Mate of the Orthocubic

X(2), X(4), X(485), X(491), X(1585), X(1659), X(3068)

K071 Steiner-McCay cubic, Kconc, psK(X5, X69, X4), spK(X3, X1216), a stelloid

X(4), X(5), X(20), X(76), X(5562), cusps of the Steiner deltoid H3

K072 Kgohk = nK(X6, X9969, X2), spK(X542, X5), an isogonal focal nK

X(2), X(3), X(4), X(6), X(542), X(842), X(6328), E(401), E(402), E(403), E(404), E(638), E(676)

K073 Ki, pK(X50, X3)

X(3), X(15), X(16), X(35), X(36), X(54), X(74), X(186), X(1154), X(1511), X(3165), X(3166), X(3438), X(3439), X(6104), X(6105), E(379), E(466), E(506), E(571), E(572), E(639), E(640), E(641), E(643)

K074 KH, nK(X6, X2, X3)

X(3), X(4), X(4240), X(4240)*

K075 Kp(X32)

X(6), X(206)

K076 Kc(X32)

X(2), X(6), X(154), X(206)

K077 Kp60 = Kp(X6), Deaux (first) cubic, a K60+

X(1), X(3), X(20), X(170), X(194), cusps of the anticomplement aH3 of the Steiner deltoid H3

K078 Kc60 = Kc(X6), Deaux (second) cubic or McCay-Thomson cubic, a K60+

X(1), X(2), X(3), X(165), X(5373), X(6194))

K079 Kp(X115)++

X(523)

K080 KO++, a central cubic, a K60++, spK(X3, X550)

X(3), X(4), X(20), X(1670), X(1671)

K081 nK(X6, X2,?), an equal power cubic

---

K082 Equal power+ cubic, nK0+(X6, X2)

---

K083-A A-Equi-brocardian focal

X(368)

K083-B B-Equi-brocardian focal

X(368)

K083-C C-Equi-brocardian focal

X(368)

K084 Steiner isogonal central focal cubic, nK(X6, X11052, X99), spK(X512, X99)

X(99), X(512)

K085 isogonal cK60, cK(#X1, X4383)

X(1)

K086 Gergonne strophoid, nK(X6, X514, X1), cK(#X1, X514), spK(X519, X1), spK(X519, X2)

X(1), X(36), X(80), X(106), X(519), X(1323), X(1785), X(1795), X(4845), X(5127), X(5209), X(5526), X(5620), foci of the inscribed Steiner ellipse

K087 Steiner isotomic central cubic, nK(X2, X11053, X99)

X(99), X(523)

K088 isotomic circular cK, nK(X2, X11054, X2)

X(2), X(99), X(523)

K089 isotomic cK60, nK(X2, X11055, X2)

X(2)

K090 isotomic cyclopivotal cK, nK(X2, X145, X2)

X(2)

K091 isotomic focal nK, nK(X2, X11056, X67)

X(67), X(99), X(316), X(523)

K092 isotomic pK60, pK(X2, X11057)

X(2), X(11057), X(11058)

K093 nK0(X2, X7757), an equilateral cubic

---

K094 isotomic nK60+, nK(X2, X11059, ?)

---

K095 Co, pK(X11060, X1989)

X(6), X(53), X(395), X(396), X(1989), X(1990), X(2160), X(2161)

K096 pK(X216, X20) an equilateral cubic

X(3), X(5), X(20), X(1498)

K097 pK(X2160, X1), a pK60+

X(1), X(79)

K098 NPC pedal cubic

---

K099 Darboux perspector cubic, pK(X394, X69)

X(2), X(3), X(20), X(63), X(69), X(77), X(78), X(271), X(394)

K100 pedalsix square cubic, a K60++

X(1), X(3), X(40), X(1670), X(1671)

K101 pK(X1, X1) parallel tripolars cubic

X(1), X(2), X(87), X(192), X(366)

K102 Grebe cubic, pK(X6, X6), parallel tripolars isogonal cubic

X(1), X(2), X(6), X(43), X(87), X(194), X(3224), E(566)

K103 pK(X67, X67) parallel tripolars circular cubic

X(2), X(67), X(141), X(524), E(488)

K104 pK(X11058, X11058) parallel tripolars equilateral cubic, a pK60

X(2), X(11057), X(11058)

K105 perpendicular polars cubic, nK(X6, X1993, X3), a nK60

X(3), X(4)

K106 Steiner perpendicular tripolars cubics, nK0(X99, X4563)

X(2), X(99), X(1113), X(1114), X(2418), X(6189), X(6190)

K107 perpendicular tripolars isogonal cubic, nK(X6, X3, X2)

X(2), X(6), X(2395), X(2421)

K108 pK(X32, X23), isogonal transform of K008, a circular cubic

X(3), X(6), X(23), X(25), X(111), X(187), X(1177), X(2393), X(2930), X(3455)

K109 pK(X6, X27)

X(1), X(3), X(4), X(19), X(27), X(63), X(71), X(226), X(284), X(579), X(1751), X(1780)

K110-A iK(A') focal cubic, an inversible cubic

---

K110-B iK(B') focal cubic, an inversible cubic

---

K110-C iK(C') focal cubic, an inversible cubic

---

K111-A iK(A') symmetric cubic, an inversible cubic

---

K111-B iK(B') symmetric cubic, an inversible cubic

---

K111-C iK(C') symmetric cubic, an inversible cubic

---

K112 iK(X1141) = O(X54), pK(X11077, X1141), orthopivotal cubic, an inversible cubic

X(3), X(13), X(14), X(54), X(96), X(265), X(539), X(1141), X(1157), X(5961), X(6104), X(6105)

K113 iK(X2373), an inversible cubic

X(2), X(3), X(23), X(69), X(524), X(1177), X(2373), X(5866)

K114 iK(X74), an inversible cubic

X(3), X(15), X(16), X(74)

K115 Golden cubic, C((3 ± √5) / 2), spK(X3, X52), a K60+

X(4), X(6243)

K116 C(2) = C(1/2) = D(2) = D(X382)

X(4), X(5), X(382)

K117 C(3)

X(2), X(4), X(3146)

K118 C(-1/2)=C(-2)

X(4), X(550), X(1657)

K119 C(psi)

X(4), X(17), X(18)

K120 C(theta)

X(4), X(485), X(486), X(2041), X(2042)

K121 D(-2)

X(4), X(5), X(1657)

K122 D(-1) = D(X20)

X(4), X(5), X(20), X(481), X(482), X(485), X(486)

K123 D(-1/2) = D(X550), a K+

X(4), X(5), X(550)

K124 D(1/3)

X(2), X(4), X(5), X(3629)

K125 D(1/2)

X(4), X(5), X(1487)

K126 D(X22)

X(4), X(5), X(6), X(22), X(251), X(2165)

K127 D(3), a K+

X(4), X(5), X(3146)

K128 Z(X385, X1) = pK(X6, X385)

X(1), X(2), X(6), X(32), X(76), X(98), X(385), X(511), X(694), X(1423), X(2319), X(3186), X(3225), X(3229), X(3504) upto X(3512)

K129-a Z(X395, X1) = pK(X6, X395)

X(1), X(2), X(6), X(14), X(16), X(18), X(62), X(395), X(1653), X(6151)

K129-b Z(X396, X1) = pK(X6, X396)

X(1), X(2), X(6), X(13), X(15), X(17), X(61), X(396), X(1652), X(2981)

K130 Z(X476, X1) = pK(X6, X476) : Tixier isogonal pK

X(1), X(30), X(74), X(110), X(476), X(523), X(526)

K131 Z(X171, X2) = pK(X31, X171)

X(2), X(31), X(42), X(43), X(55), X(57), X(81), X(171), X(365), X(846), X(893), X(2162), X(2248)

K132 Z(X894, X6) = pK(X1, X894)

X(6), X(7), X(9), X(37), X(75), X(86), X(87), X(192), X(256), X(366), X(894), X(1045), X(1654)

K133 Z(X309, X31) = pK(X2, X309)

X(2), X(40), X(77), X(189), X(280), X(309), X(318), X(329), X(347), X(962)

K134 Z(X226, X55) = pK(X57, X226)

X(2), X(57), X(81), X(174), X(226), X(554), X(559), X(1029), X(1081), X(1082)

K135 Z(X291, X239) = pK(X1911, X291)

X(1), X(6), X(42), X(57), X(239), X(291), X(292), X(672), X(894), X(1477), X(1757), X(1967)

K136 Z(X292, X238) = pK(X292, X292) parallel tripolars cubic

X(1), X(2), X(37), X(87), X(171), X(238), X(241), X(291), X(292), X(1575), X(1581), X(2664)

K137 Z+(IK), nK0(X6, X513), cK0(#X1, X513)

X(1), X(44), X(88), X(239), X(241), X(292), X(294), X(1931)

K138 Z+(L)60, an equilateral cubic, locus of roots of nK0+(X6, P)

X(2), X(6)

K139 nK(X1989, X523 x X1272, X30), a nK60++ cubic, a central cubic

X(30)

K140 pK(X39, X69), a central cubic

X(6), X(66), X(69), X(141), X(159), X(1843), X(3313)

K141 pK(X2, X76)

X(2), X(4), X(6), X(22), X(69), X(76), X(1670), X(1671)

K142 an equilateral cubic

none

K143-A-B-C X(370) cubics

X(370) and its mates

K144 X(370)-antimedial cubic

X(2), X(3), X(30), X(370) and its mates, X(5667)

K145 pK(X31, X3)

X(3), X(19), X(55), X(57), X(84), X(198), X(365)

K146 pK(X2, X3)

X(2), X(3), X(264), X(3164)

K147 nK0(X110^2, X6), cK0(#X110, X6)

X(110), X(691), X(4230), X(5467)

K148 nK0(X50, X6), a circular cubic

X(15), X(16), X(110), X(526), X(5467)

K149 nK0(X2, X6)

---

K150 nK(X6 x X187, X2, X6)

X(6), X(99), X(187)

K151 nK0+(X99, X6)

---

K152 Ariadne's cubic, pK(X6, X10996)

X(1), X(3), X(4), X(10996)

K153 Brocard (eighth) cubic

X(6)

K154 pK(X2, X322)

X(2), X(7), X(8), X(78), X(84), X(273), X(322)

K155 EAC2 = Equal areas (second) cevian cubic, Z(X238, X2), pK(X31, X238)

X(1), X(2), X(6), X(31), X(105), X(238), X(292), X(365), X(672), X(1453), X(1931), X(2053), X(2054), X(2106), X(2107), X(2108), X(2109), X(2110), X(2111), X(2112), X(2113), X(2114), X(2115), X(2116), X(2117), X(2118), X(2119), X(2144), X(2145), X(2146), X(2147), X(3009)

K156 Soddy-Euler cubic, pK(X6, X5059) with OX5059 = -5 OH

X(1), X(3), X(4), X(1131), X(1132), X(1151), X(1152), X(5059)

K157 pK(X9, X1), a pK+

X(1), X(8), X(188), X(979)

K158 pK(X6, X5889)

X(1), X(5889)

K159 pK(X4, X1249)

X(253), X(1249)

K160 pK(X32, X206)

X(6), X(66), X(206)

K161 pK(X32, X5596), a central cubic

X(6), X(66), X(159), X(206), X(5596)

K162 cK(#X6, X3) isogonal transform of the Simson cubic K010

X(6), X(2420) upto X(2445)

K163 pK(X25, X393)

X(3), X(4), X(6), X(254), X(393), X(459), X(1609)

K164 van Lamoen cubic, nK0(X6, X2501), spK(X3564, X6), an isogonal focal nK0

X(3), X(4), X(468), X(895), X(3563), X(3564), X(6337)

K165 NPC isogonal strophoid, nK(X6, X10015, X1), cK(#X1, X10015), spK(X952, X1)

X(1), X(3), X(4), X(952), X(953), X(3109)

K166 Brocard (nineth) cubic, nK(X6, X3569, X3), spK(X2782, X39), an isogonal focal nK

X(3), X(4), X(1316) X(2698), X(2782)

K167 pK(X184, X6)

X(3), X(6), X(3167), X(193)*

K168 pK(X3, X2)

X(2), X(3), X(6), X(69), X(485), X(486), X(5374), X(5408), X(5409), X(6337), X(193)*

K169 pK(X6, X69)

X(1), X(2), X(6), X(20), X(25), X(64), X(69), X(159), X(200), X(269), X(1763), X(2138), X(2139)

K170 pK(X2, X4)

X(2), X(4), X(69), X(193), X(487), X(488), X(2996), X(13428)

K171 pK(X32, X25)

X(3), X(6), X(25), X(3053)

K172 pK(X32, X3)

X(3), X(6), X(25), X(55), X(56), X(64), X(154), X(198), X(1033), X(1035), X(1436)

K173 OXI cubic, pK(X6, P) with P = X(2)X(98) /\ X(25)X(69)

X(1), X(25), X(69)

K174 pK(X32, X22)

X(3), X(6), X(22), X(25), X(159), X(2353)

K175 pK(X32, X1)

X(1), X(6), X(19), X(31), X(48), X(55), X(56), X(204), X(221), X(2192)

K176 pK(X32, X4)

X(3), X(4), X(6), X(25), X(155), X(184), X(571), X(2165)

K177 pK(X32, X2)

X(2), X(3), X(6), X(25), X(32), X(66), X(206), X(1676), X(1677), X(3162)

K178 pK(X32, X69)

X(6), X(69), X(159), X(1974)

K179 pK(X32, X40)

X(6), X(34), X(40), X(55), X(56), X(212), X(2208), X(2348), X(3197)

K180 pK(X32, X84)

X(6), X(33), X(84), X(198), X(221), X(603), X(963), X(1436), X(2187), X(2192)

K181 pK(X4, X4) parallel tripolars cubic, TC(X4) a Thomson centroidal cubic

X(2), X(4), X(193)

K182 pK(X20, X4)

X(2), X(4), X(20), X(193)

K183 pK(X76,tX64) where tX64 = isotomic of X64

X(69), X(75), X(253), X(264), X(309), X(322)

K184 pK(X76, X76) parallel tripolars cubic

X(2), X(69), X(75), X(76), X(85), X(264), X(312)

K185 Hirst-Kiepert cubic, nK0(X2, X523), cK0(#X2, X523)

X(2), X(287), X(297), X(524), X(671), X(694), X(3978)

K186 Iona cubic, cK(#X4, R) with R = tripole X(526)-X(1986)

X(4), X(107), X(523)

K187 Euler isogonal focal cubic, nK(X6, X525, X3), spK(X30, X2)

X(3), X(4), X(30), X(74)

K188 Fermat isogonal focal cubic, nK0(X6, X1637), spK(X542, X6)

X(542), X(842)

K189 Tarry isogonal focal cubic, nK0(X6, X230), spK(X523, X6)

X(110), X(523)

K190 nK0(X6, X468), spK(X525, X6), an isogonal focal cubic

X(112), X(525)

K191 circumcircle pedal cubic, nK(X6, X6,?)

---

K192 orthic pedal cubic, nK(X6, X6, X110), spK(X523, X230), an isogonal focal nK

X(110), X(523)

K193 Kjp hessian cubic

X(2), X(15), X(16), X(512), X(3111)

K194 Staffa cubic, a pK

X(4), X(1656), X(1657)

K195 Ulva cubic, a pK

X(4), X(3090), X(3529)

K196 nK0+(X76, X2)

---

K197 isotomic circular nK0, nK0(X2,P) with P = X(2)X(76) /\ X(115)X(316)

X(99), X(523)

K198 isotomic equilateral nK, nK(X2, X76, ?)

---

K199 Soddy-Nagel cubic, pK(X9, X8)

X(1), X(8), X(40), X(175), X(176), X(188), X(280), X(483), X(3082)

K200 Soddy-Gergonne-Nagel cubic, pK(X2, X8)

X(2), X(7), X(8), X(144), X(175), X(176), X(1143), X(1274)

K201 pK(X9, X145), a central cubic

X(1), X(8), X(145), X(188), X(2136), X(3680)

K202 pK(X1, X144), a central cubic

X(7), X(9), X(144), X(366), X(2951), X(3062)

K203 A1(X115), an Allardice (first) cubic, the complement of K052

X(115), X(1648), X(2679)

K204 nK0+(X1989 x X110, X110), an equilateral cubic, a stelloid

---

K205 nK0+(X1989, X523), an equilateral cubic, a stelloid

---

K206 Z(X1, X80), pK(X7113, X1)

X(1), X(15), X(16), X(36), X(58), X(106), X(202), X(203), X(214), X(501), X(758), X(1130), X(3065), X(6126)

K207 Kw(X1), psK(X2308, X2, X6)

X(6), X(9), X(86), X(1100), X(1213), X(1839), X(2160)

K208 Kw(X4), psK(X5 x X393, X2, X53)

X(53), X(216), X(264), X(393), X(1249)

K209 pK(X468, X4), DF(X193)

X(2), X(4), X(126), X(193), X(468), X(524), X(671), X(2374), X(5095), X(5203)

K210 Dergiades-Yiu cubic, psK(X25, X648, X4)

X(4), X(110), X(523), X(1113), X(1114), X(2574), X(2575)

K211 nK(X4, X264, ?)

---

K212 psK(X2489, X4, ?)

---

K213 McCay-Ehrmann cubic, a K60++, a central stelloid

X(2)

K214 nK(X32, X6, X523)

X(523), X(1576)

K215

X(6), X(2086), X(2087), X(2088)

K216 Neuberg cubic sister, nK(X6, X5, ?)

---

K217 nK0(X115, X1640) = cK0(#X523, X1640)

X(30), X(98), X(468), X(523), X(868)

K218 Kiepert trident, nK0(X115, X1648), cK0(#X523, X1648)

X(523)

K219 A1(G), an Allardice cubic, the complement of K015

X(2), X(1645), X(1646), X(1647), X(1648), X(1649), X(1650)

K220 Mittencubic, the Deléham cubic with node X(9), psK(X55, X2, X6)

X(6), X(7), X(9), X(173), X(268), X(281), X(3161)

K221 cK0(#X1, X661), nK0(X6, X661)

X(1), X(240), X(293), X(896), X(897), X(1757), X(1758), X(1929), X(1966), X(1967), X(2648)

K222 cK0(#X6, X512), nK0(X32, X512)

X(6), X(111), X(187), X(232), X(248), X(385), X(5291)

K223 cK0(#X6, X647), nK0(X32, X647)

X(6), X(74), X(511), X(1495), X(1976)

K224 cK0(#X6, X649), nK0(X32, X649)

X(6), X(106), X(238), X(902), X(1326), X(1458), X(1911), X(2054), X(2195)

K225 cK0(#X6, X663), nK0(X32, X663)

X(6), X(672), X(1055), X(1438), X(1949), X(2202), X(2291), X(5060)

K226 Musselman (fourth) cubic

X(3), X(4), X(3134)

K227 McCay circular cubics

X(1)

K228 cK(#X1, X1), nK(X6, X1, X1), an isogonal circum-conico-pivotal cubic

X(1), X(1022), X(1023)

K229 cK(#X6, X6), nK(X32, X6, X6), a circum-conico-pivotal cubic

X(6)

K230 cK(#X80, E596), a cK60+

X(80), X(2222)

K231 nK(X6, X20, X2)

X(2), X(6)

K232

X(2), X(6)

K233 pK(X25, X4)

X(2), X(4), X(6), X(25), X(193), X(371), X(372), X(2362)

K234

X(2), X(6)

K235 Yiu cubic, pK(X2, tgX20) where tgX20 is the isotomic conjugate of the isogonal conjugate of X(20)

X(2), X(4), X(64), X(69), X(394), X(2052), X(3346), X(1498)*, X(1660)*, X(1661)*

K236 pK(X32, X20)

X(3), X(6), X(20), X(25), X(393), X(577), X(1498), X(1660), X(1661)

K237 pK(X115, X2)

X(2), X(115), X(523), X(1312), X(1313), X(3413), X(3414)

K238 pK(X115, X4)

X(4), X(125), X(523), X(1312), X(1313), X(2574), X(2575)

K239 pK(X115, X671)

X(2), X(115), X(523), X(524), X(671), X(690), X(1648), X(5466)

K240 pK(X2, X892)

X(2), X(99), X(523), X(524), X(671), X(690), X(892), X(5466), X(5468)

K241 pK(X523, X5466)

X(2), X(523), X(524), X(620), X(671), X(690), X(5466)

K242 pK(X2, X99)

X(2), X(99), X(523), X(1113), X(1114), X(3413), X(3414), X(6189), X(6190)

K243 pK(X6, X376)

X(1), X(3), X(4), X(376), X(3426), X(5119)

K244 Ehrmann-MacBeath cubic, a cubic related with inscribed deltoids

X(76), X(764), cusps of the Steiner deltoid

K245 pK(X523, X525)

X(4), X(525), X(3413), X(3414)

K246 pK(X647, X520)

X(4), X(520), X(2574), X(2575)

K247 pK(X650, X521)

X(4), X(521), X(3307), X(3308)

K248 Brocard-Steiner focal cubic, nK(X6, X512, X187), spK(X538, X2)

X(187), X(538), X(671), X(729)

K249 Napoleon focal cubic, nK(X6, ?, X2)

X(2), X(6), X(17), X(18), X(61), X(62)

K250 Vecten focal cubic, nK(X6, X9131, X2)

X(2), X(6), X(371), X(372), X(485), X(486), X(6792)

K251 pK(X238, X2)

X(1), X(2), X(9), X(86), X(238), X(239), X(292), X(673), X(893), X(1447), X(1929), X(1966), X(2238)

K252 pK(X1691, X2)

X(2), X(3), X(6), X(83), X(98), X(171), X(238), X(385), X(419), X(1429), X(1691), X(2329)

K253 pK(X2092, X2)

X(2), X(3), X(6), X(10), X(37), X(65), X(429), X(960), X(1193), X(1211), X(2051), X(2092), X(3666)

K254 pK(X2, X314)

X(1), X(2), X(4), X(65), X(69), X(75), X(81), X(314), X(321), X(1764), X(2995), X(3869)

K255 pK(X3003, X146) a pK++ with center X(113), a central cubic

X(74), X(113), X(146), X(265), X(399), X(1986), X(2935)

K256 a pK related to K255

X(99), X(110), X(648), X(2407)

K257 a nodal K+, the isotomic transform of K028, psK(X69, X76, X6)

X(6), X(7), X(69), X(264)

K258 a nodal K60+, the complement of K028, Cax(X3) in CL047, L(X3) in the paper "Another kind of Lemoine cubics"

X(1), X(3), X(5), X(39), X(2140)

K259 the Deléham cubic with node X(1), psK(X55, X2, X1), spK(X145, X1)

X(1), X(3), X(8), X(220), X(277), X(3160), X(3445)

K260 the Deléham cubic with node X(6), psK(X184, X2, X6)

X(6), X(69), X(206), X(219), X(478), X(577), X(1249), X(2165)

K261a Evans (first) cubic, O(X62) orthopivotal cubic, pK(X11081, X13)

X(13), X(14), X(15), X(16), X(17), X(62), X(532), X(619), X(2381), X(5612), X(6104), X(6111), X(6116)

K261b Evans (second) cubic, O(X61) orthopivotal cubic, pK(X11086, X14)

X(13), X(14), X(15), X(16), X(18), X(61), X(533), X(618), X(2380), X(5616), X(6105), X(6110), X(6117)

K262a Evans (third) cubic, O(X15) orthopivotal cubic

X(13), X(14), X(15), X(16), X(531), X(2378), X(5463)

K262b Evans (fourth) cubic, O(X16) orthopivotal cubic

X(13), X(14), X(15), X(16), X(530), X(2379), X(5464)

K263 O(X511) orthopivotal cubic

X(13), X(14), X(15), X(16), X(262), X(511), X(842), X(5978), X(5979)

K264a pK(X2, X298)

X(2), X(13), X(298), X(616), 3 mates of X(370)

K264b pK(X2, X299)

X(2), X(14), X(299), X(370), X(617), 2 mates of X(370)

K265 X(370)-medial cubic

X(370) and its mates

K266 X(370)-equilateral cubic

X(370) and its mates

K267 nK(X2, X5 x X99, X2), cK(#X2, X5 x X99)

X(2), X(4), X(69), X(263), X(13428)

K268 equilateral CPCC cubic, a K60+

X(4), X(20), X(140)

K269 pK(X6, X515)

X(1), X(36), X(40), X(80), X(84), X(102), X(515)

K270 pK(X6, X1503)

X(1), X(20), X(64), X(147), X(1297), X(1503), X(5000), X(5001), X(5018)

K271 a cubic invariant under an oblique symmetry

X(3), X(5), X(1499)

K272 an axial nodal cubic

X(2), X(51), X(512)

K273 pK(X111, X671), DF(X6)

X(2), X(4), X(6), X(23), X(111), X(524), X(671), X(895), X(5523), E(575)

K274 circum-strophoid with node X(36)

X(3), X(36), X(186), X(859), X(953)

K275 circum-strophoid with node X(80)

X(4), X(80), X(150), X(265), X(952)

K276 pK(X76, X3260), the isotomic transform of the Neuberg cubic

X(69), X(75), X(264), X(298), X(299), X(300), X(301), X(1272), X(1494), X(3260)

K277 complement of K276, CT-transform of the Neuberg cubic

X(6), X(37), X(216), X(395), X(396), X(1989), X(3003), X(3163)

K278 pK(X1989, X1989)

X(2), X(13), X(14), X(395), X(396), X(1989)

K279 pK(X2, X3260)

X(2), X(4), X(69), X(74), X(94), X(146), X(323), X(1138), X(1272), X(2071), X(3260)

K280 Ke1(G) in CL054, spK(X6, X597)

X(2), X(6), X(262), X(378), X(995), X(1002), X(1340), X(1341), X(5968)

 

to Part 2